
 : 2021, Volume 1 - 1 - CC By 4.0: © Kupis et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits authors to copy and redistribute 
the material in any medium or format, remix, transform and build upon material, for any purpose, even commercially.

Body Mass Index Moderates Brain Dynamics  
and Executive Function: A Structural Equation 

Modeling Approach

Lauren Kupis,a Zachary T. Goodman,b Salome Kornfeld,b Celia Romero,b Bryce Dirks,b Leigha Kircher,b  
Catie Chang,c,d,e Maria M. Llabre,b Jason S. Nomi,a Lucina Q. Uddina*

a Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA  
b Department of Psychology, University of Miami, Coral Gables, FL, USA

c Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
d Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA

e Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA

ABSTRACT

Obesity is associated with negative physical and mental health outcomes. Being overweight/obese is also associated with execu-
tive functioning impairments and structural changes in the brain. However, the impact of body mass index (BMI) on the relationship 
between brain dynamics and executive function (EF) is unknown. The goal of the study was to assess the modulatory effects of 
BMI on brain dynamics and EF. A large sample of publicly available neuroimaging and neuropsychological assessment data col-
lected from 253 adults (18–45 years; mean BMI 26.95 kg/m2 ± 5.90 SD) from the Nathan Kline Institute (NKI) were included (http://
fcon_1000.projects.nitrc.org/indi/enhanced/). Participants underwent resting-state functional MRI and completed the Delis–Kaplan 
Executive Function System (D-KEFS) test battery (1). Time series were extracted from 400 brain nodes and used in a co-activation 
pattern (CAP) analysis. Dynamic CAP metrics including dwell time (DT), frequency of occurrence, and transitions were computed. 
Multiple measurement models were compared based on model fit with indicators from the D-KEFS assigned a priori (shifting, 
inhibition, and fluency). Multiple structural equation models were computed with interactions between BMI and the dynamic CAP 
metrics predicting the three latent factors of shifting, inhibition, and fluency while controlling for age, sex, and head motion. Models 
were assessed for the main effects of BMI and CAP metrics predicting the latent factors. A three-factor model (shifting, inhibition, 
and fluency) resulted in the best model fit. Significant interactions were present between BMI and CAP 2 (lateral frontoparietal 
(L-FPN), medial frontoparietal (M-FPN), and limbic nodes) and CAP 5 (dorsal frontoparietal (D-FPN), midcingulo-insular (M-CIN), 
somatosensory motor, and visual network nodes) DTs associated with shifting. A higher BMI was associated with a positive relation-
ship between CAP DTs and shifting. Conversely, in average and low BMI participants, a negative relationship was seen between 
CAP DTs and shifting. Our findings indicate that BMI moderates the relationship between brain dynamics of networks important for 
cognitive control and shifting, an index of cognitive flexibility. Furthermore, higher BMI is linked with altered brain dynamic patterns 
associated with shifting.
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INTRODUCTION

Overweight and obesity are prevalent in one-third of the 
global population (2) and 42.4% of adults in the United 
States (3). Obesity accounts for over 2.8 million deaths 
per year (4), and a body mass index (BMI) ≥30 is addi-
tionally a risk factor for greater complications as a re-
sult of the novel coronavirus (COVID-19) (5). Overweight 
(BMI 25 to <30) and obesity are typically considered 

physical health conditions associated with comorbid 
conditions such as type II diabetes and cardiovascular 
disease (6). In addition to these health concerns, obe-
sity is increasingly linked with cognitive impairments 
and brain alterations (7–9). Cognitive impairments are 
found to worsen with increasing BMI (10,11) throughout 
the lifespan (11). Additionally, obesity during midlife is 
associated with greater risks of dementia (12) and brain 
atrophy in later life (13).

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
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Accumulating evidence supports cognitive impairment 
in the form of executive function (EF) deficits in overweight/
obese individuals (14,15). EFs are higher-order cognitive 
processes that enable goal-oriented behaviors (16,17) and 
are important for various aspects of daily functioning in-
cluding maintaining a job (18), social functioning (19,20), 
and well-being (21). EFs can be divided into distinct but 
related components (22) including inhibition, cognitive 
flexibility, and updating (23,24). A recent meta-analysis 
revealed that individuals with obesity primarily show  
impairments on EF tasks that require inhibition, cognitive 
flexibility, working memory, decision-making, verbal fluen-
cy, and planning (15). Additionally, impairments in EF and 
overweight/obesity are associated with negative impacts 
on mental health such as anxiety and depression (25–28).

A common neuropsychological test used to assess EF 
is the Delis–Kaplan Executive Function System (D-KEFS) 
(1). The D-KEFS consists of nine tests of varying EF com-
ponents; however, composite scores within the tests 
have been tested as construct-specific factors rather 
than stand-alone tests (29,30). The use of latent vari-
ables as dependent variables reduces the task impurity 
problem by tapping into the underlying construct rather 
than relying on one impure measure of a task. The la-
tent variable is characterized by statistical extraction of 
the variance shared by multiple tasks that are thought 
to require the same executive control ability, resulting in 
a purer measure of the ability (31,32). The D-KEFS does 
not include direct tests within the latent factor of updat-
ing (i.e., continuously monitoring working memory and 
updating content), which is thought to be one of three 
EF constructs in well-known latent models of executive 
functioning (23). The three constructs instead include 
shifting, inhibition, and fluency (33). The three latent fac-
tors of D-KEFS are defined as follows: (1) shifting or the 
mental ability to switch or shift in response to changing 
stimuli (an index of cognitive flexibility) (34); (2) inhibition 
or the ability to control one’s behavior and thoughts to 
inhibit responses (16); and (3) fluency, thought to under-
lie executive control and updating (35), fluency in gen-
erating new designs (i.e., creativity) (36), and an index of 
verbal abilities.

Recent studies examining brain functional connectivity 
in overweight/obesity have identified alterations in brain 
networks rather than specific brain regions that may 
impact EF. Studies have reported network alterations 
among the midcingulo-insular/salience network (M-CIN), 
medial frontoparietal/default network (M-FPN), and lat-
eral frontoparietal/central executive network (L-FPN) in 
overweight/obese individuals (37–45). The M-CIN plays 
a role in detecting salient information and coordinating 
transitions between the L-FPN and M-FPN; the L-FPN is 
involved in executive or control processes; the M-FPN 
is involved in self-referential thoughts and monitoring of 
the environment (46). The dynamic relationships among 
these three core neurocognitive networks are additional-
ly thought to enable flexible cognition (46,47), important 

for EFs. Alterations among the M-CIN, L-FPN, and M-FPN 
in overweight/obesity provide further support for altered 
reward processing and EF, and cognitive and emotional 
processing of salient food cues (48). Alterations among 
these networks have also been previously associated 
with various neuropsychiatric disorders (49), suggesting 
these networks are important treatment targets for pop-
ulations such as obese individuals.

Evidence of brain alterations among the three large-
scale neurocognitive networks provides important in-
sights into potential neural mechanisms underlying 
behavior; however, whole-brain functional connectivity 
studies have revealed alterations among other regions 
in overweight/obese individuals. Functional connectivity 
alterations have been observed between the aforemen-
tioned three large-scale networks and visual (39,45,50), 
limbic (44), sensorimotor (39,51), and dorsal frontoparietal 
networks (D-FPN; dorsal attention) (39). These findings 
suggest that it is important to examine whole-brain net-
work relationships in overweight/obesity. Further, brain 
regions important for monitoring external and internal 
processes are altered in overweight/obesity (39–45) and 
suggest that BMI may alter the way network flexibility 
is associated with flexible behavior such that reduced  
network flexibility may be linked with poorer EF and 
adaptive behavior.

There are very few studies to date that have examined 
the relationship among EF, BMI, and the brain (52–54), 
and no study to date has examined the relationship 
among BMI, brain network dynamics, and EF. Brain net-
work dynamics have previously been shown to predict 
EF performance irrespective of BMI (55). Recent work has 
also shown that brain network dynamics of the L-FPN, 
thought to underlie EFs, were correlated with BMI (56). 
Additionally, increased BMI (overweight/obesity) is as-
sociated with reduced cerebral blood flow (57). Neural 
activity in the brain is dependent on cerebral blood flow 
(58–60), and cerebral blood flow is correlated with func-
tional connectivity strength (61). Further, brain dynamics 
represent time-varying brain states (62) that may also be 
modulated by cerebral blood flow (63). Combined with 
the previously noted influence of BMI on cerebral blood 
flow, it is plausible to infer that the relationship between 
brain dynamics and EF may be moderated by an individ-
ual’s BMI; however, this has not been previously tested.

Although there is evidence that dynamic brain function 
is associated with EF performance (55,64,65), brain dy-
namic patterns are not consistently associated with each 
EF (e.g., shifting but not inhibition or fluency/updating) 
(55,64), leading to the question of whether another vari-
able (e.g., moderator) could be accounting for the differ-
ences. Further, altered functional connectivity among re-
gions important for EF is accompanied by impaired EF in 
individuals with a higher BMI, but not in individuals within 
a healthy BMI (37). This suggests that the relationship be-
tween brain function and EF may vary depending on an 
individual’s BMI (e.g., optimal brain function is related to 
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inhibition, using structural equation modeling (SEM). 
Examination of the dynamic interactions among the 
M-CIN, L-FPN, and M-FPN has provided important in-
formation about the network interactions subserving 
cognition; however, large-scale network interactions 
with other brain regions, such as the visual network, 
also lend insight into flexible cognition (85). Therefore, 
whole-brain network co-activations were assessed in 
this study. We hypothesized that a higher BMI would be  
associated with an altered relationship between brain 
network dynamics among the M-CIN, M-FPN, and L-FPN 
and shifting, an index of cognitive flexibility (34).

METHODS

Participants

This study included a sample of 253 adults (18–45 years) 
from the publicly available Nathan Kline Institute—
Rockland Sample (http://fcon_1000.projects.nitrc.org/
indi/enhanced/). Inclusionary criteria were as follows: (1) 
available neuroimaging and behavioral data, (2) no cur-
rent Diagnostic and Statistical Manual of Mental Disorders 
(DSM) diagnosis, and (3) mean framewise displacement 
(FD) < 0.5 mm (Table 1). Institutional Review Board ap-
proval was obtained for this project, and written informed 
consent was obtained for all study participants.

MEASURES

Body Mass Index

BMI was calculated from weight in kilograms divided 
by height in meters squared (kg/m2) for all participants. 
Weight and height were measured during the study visit 

optimal EF in healthy-weight individuals, but poorer brain 
function is related to poorer EF in overweight/obese indi-
viduals). Together, this implies that BMI may be tested as 
a moderator of the relationship between brain dynamics 
and EF as previously done in other fields (66,67) to better 
understand how the relationship between two variables is 
affected by varying levels of BMI (68).

In this study, BMI was tested as a moderator primar-
ily due to the following reasons: (1) previous evidence 
of brain dynamics supporting EF (55,64); (2) the un-
clear directionality among BMI, EF, and brain dynamics 
(69,70); (3) previous work examining brain structure and 
functional connectivity rather than brain dynamics; (4) ac-
cess to cross-sectional data; (5) previous work using BMI 
as a moderator; and (6) the use of a population (young 
to middle-aged adults) where brain function is optimal 
(71–74) and less is known in this population regarding EF 
and brain function related to BMI (75,76). By adopting 
a moderator framework, the relationship between brain 
function and EF can be examined at different levels of 
BMI. Such insight may benefit researchers and clinicians 
when assessing young- to middle-aged adults at varying 
BMI levels and overweight/obese adults who may be at 
greater risk of altered time-varying brain function paired 
with poorer cognition.

Functional connectivity and structural neuroimaging 
methods have provided insight into brain organization 
differences in overweight/obese individuals; however, 
recent developments in neuroimaging posit dynamic 
methods, such as sliding window correlations (77,78) and 
co-activation patterns (CAPs) (77,79), may be applied to 
capture time-varying changes in the brain architecture 
(see (62)). Further, dynamic or time-varying methods may, 
in some cases, better capture relationships between 
brain function and cognition and behavior than static 
functional connectivity methods (80,81). Dynamic meth-
ods have also been shown to reveal relationships with 
BMI and behavior where static methods were unable to 
(56). CAPs, in particular, identify critical co-activating pat-
terns that recur across time by averaging time points with 
similar spatial distributions of brain activity at either the 
whole-brain or region-of-interest level (82). Further, CAPs 
require the specification of fewer assumptions than slid-
ing window methods as they do not rely on arbitrary defi-
nitions of window size. CAPs have also been utilized to 
study neuropsychiatric disorders such as autism (64,83,84) 
and dynamic network changes across the lifespan (Kupis 
et  al. 2021). Despite the advantages to using dynamic 
MRI methods over static MRI methods, no study to date 
has examined dynamic brain network alterations during 
rest across BMI or its association with EF. Further, explor-
ing relationships among brain networks using brain dy-
namics has shown to be beneficial for the study of EF due 
to the various networks underlying EF (55).

This study aims to explore BMI as a moderator of the 
relationship between whole-brain CAP dynamics and 
EF, indexed by latent factors of shifting, fluency, and 

Table 1. Participant Demographics

N = 253
mean ± SD (minimum − maximum)

BMI (kg/m2) 26.95 ± 5.90 (16.26 − 49.96)

Age (years) 28.44 ± 7.55 (18.15 − 44.82)

Mean FD (mm) 0.23 ± 0.09 (0.08 − 0.49)

Sex 105 M/ 148 F

DF Switching 8.59 ± 2.94 (1.00 − 16.00)

TMT 9.97 ± 2.83 (1.00 − 15.00)

VF Switching 10.47 ± 3.56 (1.00 − 19.00)

CWIT Inhibition 10.26 ± 2.89 (1.00 − 16.00)

CWIT Inhibition/Switching 9.89 ± 3.04 (1.00 − 14.00)

Tower Total Achievement 9.99 ± 2.36 (2.00 − 19.00)

VF Letter Fluency 10.61 ± 3.44 (1.00 − 19.00)

VF Category Fluency 11.28 ± 3.64 (2.00 − 19.00)

DF Composite Score 10.42 ± 2.69 (4.00 − 18.00)

Note: BMI, body mass index; FD, framewise displacement; DF, Design Fluency; 
TMT, Trail Making Test; VF, Verbal Fluency; CWIT, Color-Word Interference Test.

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
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MRI Protocol

Three-dimensional magnetization-prepared rapid gra-
dient-echo imaging (3D-MP-RAGE) structural scans 
and multiband (factor of 4) EPI-sequenced resting-state 
fMRI (rsfMRI) were acquired using a Siemens TrioTM 3.0  
T MRI scanner. Scanning parameters were as follows:  
TR = 1400 ms, 2 × 2 × 2 mm, 64 interleaved slices, TE = 
30 ms, flip angle = 65 degrees, field of view (FOV) = 224 
mm, 404 volumes. Participants were instructed to keep 
their eyes open and fixate on a cross in the center of the 
screen during the 9.4-minute rsfMRI scan. For detailed 
MRI protocol information, see http://fcon_1000.projects 
.nitrc.org/indi/pro/nki.html.

Preprocessing and Postprocessing

Preprocessing steps were conducted using the Data 
Preprocessing Assistant for Resting-State fMRI Advanced 
edition (DPARSF-A; (88)), which uses FMRIB Software 
Library (FSL) and Statistical Parametric Mapping (SPM)-
12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), 
and were as follows: removal of the first five volumes to 
allow scanner signal to reach equilibrium, despiking, re-
alignment, normalization directly to the 3 mm Montreal 
Neurological Institute (MNI) template, and smoothing  
(6 mm Full Width at Half Maximum (FWHM)).

Independent component analysis (ICA) was conduct-
ed using FSL’s MELODIC by means of automatic dimen-
sionality estimation. The ICA-FIX classification algorithm 
was applied to the data (FMIRB’s ICA-FIX; (89)) using a 
subset of the participants to train FIX. ICA-FIX then clas-
sified ICA into noise and non-noise components for the 
rsfMRI data for individual subjects. The fMRI data also un-
derwent nuisance covariance regression (linear detrend, 
Friston 24 motion parameters, global mean signal), de-
spiking using AFNI’s 3dDespike algorithm, and bandpass 
filtering (0.01–0.10 Hz). Information about the data pro-
cessed without global mean signal regression is included 
in Supplementary Materials.

Parcellation

A 400 node parcellation was used containing nodes with-
in 17 networks ((90); https://github.com/ThomasYeoLab/
CBIG/tree/master/stable_projects/brain_parcellation/
Schaefer2018_LocalGlobal). The parcellation incorpo-
rates local gradient and global similarity approaches 
from task-based and resting-state functional connectivity.

Co-activation Pattern Analysis

The time series were extracted from the 400 nodes for 
each subject and were converted to z-statistics and con-
catenated into one (nodes × timepoints) matrix (where 
the number of timepoints is 399 TR × 253 subjects). 

by study staff. Participants ranged in their BMI from un-
derweight (<18.5 BMI), healthy weight (18.5 to <20 BMI), 
overweight (25 to <30 BMI), and obese (30 or higher 
BMI). For the purpose of this study, overweight/obesi-
ty are discussed interchangeably. See Figure S1 for a 
graphical distribution of BMI in this sample.

Shifting

The D-KEFS was administered to all participants (1). 
The tasks with shifting (an index of cognitive flexibility) 
conditions within the D-KEFS include the Trail Making 
Test (TMT), the Design Fluency (DF) Test, and the Verbal 
Fluency (VF) Task. The TMT consists of five conditions, 
including the Number-Letter Switching condition (86). 
During the Number-Letter Switching condition, subjects 
switch back and forth between connecting numbers and 
letters (i.e., 1, A, 2, B, etc.) (87). The DF test consists of 
three conditions including a Switching condition. In the 
Switching condition, participants are asked to alternate 
between connecting empty and filled dots. Lastly, the VF 
test consists of three conditions, including the Category 
Switching condition. During the Category Switching con-
dition, participants alternate between saying words from 
two different semantic categories.

Inhibition

The D-KEFS tasks with inhibition conditions included the 
Color-Word Interference Test (CWIT) and the Tower Test. 
The CWIT is a modified Stroop task and consists of four 
conditions including an inhibition and inhibition/switch-
ing condition. In the CWIT Inhibition condition, the par-
ticipant is presented with color names that are written in 
incongruent ink color. The participant is required to name 
the ink color and ignore the written word. Therefore, par-
ticipants have to inhibit saying the more automatic written 
word response. In the Inhibition/Switching condition, par-
ticipants are presented with a page containing the words 
“red,” “green,” and “blue,” written in red, green, or blue 
ink. Some of the words are contained in a box, and the 
subject must switch between saying the color of the ink 
(word is not inside a box) or the color of the word (word in-
side a box). The Tower Test examines the participant’s abil-
ity to plan and carry out steps to attain the desired goal.

Fluency

The D-KEFS tasks with fluency conditions included the 
VF test and the DF test. The fluency measures in the VF 
test include the Letter Fluency and Category Fluency 
conditions. In both conditions, participants must gen-
erate as many words as possible within 60 seconds, be-
ginning with either a specific letter or within a specific 
category. The DF test included trials where participants 
had to connect either empty or filled dots.

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
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Switching-total score or time to completion. The shifting 
indicator in the DF Switching condition was the Switching 
Total Correct score or the number of unique designs 
drawn. The shifting indicator in the VF test was the total 
correct number of category switches made.

The indicators for inhibition included the CWIT 
Inhibition and Inhibition/Switching conditions and Tower 
total achievement score. The inhibition indicator for the 
CWIT Inhibition condition was the total number of cor-
rect responses. The inhibition indicator in the Tower Test 
was the Total Achievement score or the sum of points 
given in each trial. The CWIT shifting indicator included 
the total score for the number of correct switches made. 
Although the Inhibition/Switching condition could also 
potentially be used as an indicator for the shifting factor, 
previous work has found it to be involved in inhibition 
using the SEM framework (33).

The fluency indicators included the VF letter and cat-
egory fluency scores, and the DF total composite score. 
The fluency indicators in the VF test included the Letter 
Fluency Total Correct score and the Category Fluency 
Total correct scores. The fluency indicator from the DF 
test was the total unique designs drawn across the two 
DF trials.

The three-factor model including shifting, inhibition, 
and fluency was evaluated first for statistical fit, and one- 
and two-factor models were evaluated thereafter because 
of previous theoretical evidence supporting both the unity 
and diversity of EFs (23). The one-factor model included 
all indicators under one factor or a “common EF.” Three 
two-factor models were tested with three combinations of 
the latent factors (i.e., shifting with inhibition; shifting with 
fluency; inhibition with fluency). The proposed model is 
presented in Figure 1.

Structural Model

The best-fitting model from the confirmatory factor 
analysis was tested within the framework of SEM. The 
latent variable(s) in the model were the dependent vari-
ables in the SEMs. The use of SEMs has been growing 
within the field of cognitive neuroscience (93) and brain 
dynamic analyses (94). First, BMI was tested as a moder-
ator between each brain dynamic metric (DT, frequency 
of occurrence, and transitions) for each of the five CAPs 
and the latent variable (shifting, inhibition, or fluency) 
in an exploratory analysis. A moderator is a variable 
thought to affect the relationship between two other 
variables (68). A moderator was tested because there 
is previous evidence that brain dynamics support EF 
(55,64); however, the results were not consistent across 
all EFs suggesting the relationship between brain dy-
namics and EF may be dependent on a third variable 
for specific EFs. BMI was tested as the moderator due 
to previous work suggesting a link between brain dy-
namics and EF, and previous evidence that functional 

The matrix was then subjected to k-means clustering to  
determine the optimal number of clusters. The elbow 
criterion was applied to the cluster validity index (the 
ratio between within-cluster to between-cluster dis-
tance) for values of k = 2–20, and an optimal value of  
k = 5 was determined (Figure S2).

K-means clustering (squared Euclidean distance) was 
then applied to the matrix using the optimal k = 5 to 
produce five CAPs (“brain states”). CAP metrics were cal-
culated and included: (a) dwell time (DT), calculated as 
the average number of continuous TRs that a participant 
stayed in a given brain state, (b) frequency of occurrence 
of brain states, calculated as an overall percentage that 
the brain state occurred throughout the duration of rsfM-
RI scan compared to other brain states, and (c) the num-
ber of transitions, calculated as the number of switches 
between brain states.

Statistical Analysis

The normative data were age-corrected for all D-KEFS 
variables. All data were screened for outliers, missingness 
in data, and tests of assumptions (see Supplementary 
Materials for more information about the assumptions). 
Additionally, each CAP was assessed prior to statistical 
modeling to determine if the brain regions co-activated 
in each CAP had theoretical support behind including 
the CAP in the models. Using a two-step procedure, a 
measurement model was evaluated first to ensure an 
acceptable fit for the data, and then a structural mod-
erated model was examined. Confirmatory factor anal-
ysis (measurement model) and SEM were conducted 
in MPlus (91,92) using maximum likelihood to estimate 
model parameters and full information maximum like-
lihood approach to allow data to be included regard-
less of the pattern of missingness in the data. Code for 
all MPlus analyses is publicly available (https://github 
.com/lkupis/NKI_BMI). Covariates included mean FD, 
age, and sex. All models were assessed for the goodness 
of fit by examining the following: χ2, comparative fit index 
(CFI), standardized root-mean-square residual (SRMR), 
and root-mean-square error of approximation (RMSEA). 
χ2 > .05, CFI ≥ .95, SRMR values ≤ .08, and RMSEA  
values ≤ .06 indicated good model fit.

Confirmatory Factor Analysis

A three-factor model was tested based on prior findings 
of a three-factor model using the D-KEFS (33). The three 
factors were shifting, inhibition, and fluency. Additionally, 
all indicators used were scaled or age-adjusted scores  
(M = 10, SD = 3).

The indicators for shifting included the TMT Number-
Letter Switching condition, the DF Switching condition, 
and the VF Switching condition scores. The shifting in-
dicator in the TMT condition was the Number-Letter 

https://github.com/lkupis/NKI_BMI
https://github.com/lkupis/NKI_BMI
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connectivity may give rise to poorer EF at certain lev-
els of BMI, primarily in overweight/obese individuals 
(37,95). Additionally, the use of a moderator is benefi-
cial when the relationships among variables are equiv-
ocal (70), as in BMI, brain dynamics, and EF (11,37). BMI 
and the brain dynamic metrics were mean centered to 
reduce multicollinearity (96).

The interactions were tested separately to reduce 
the effects of multicollinearity and negative impacts on 
parameter estimations (97). Accordingly, each latent 

factor outcome was tested while retaining all latent 
factors in the model due to best model fit; however, 
they were predicted one at a time with the main ef-
fects and covariates as depicted in Figure 2. Variables 
without a significant interaction were tested for main 
effects using the SEM framework. Significant interac-
tions indicate that the effect observed between the in-
dependent variable and dependent variable is depen-
dent on a moderating variable (98,99). As in previous 
work (64,100,101), only variables within nonsignificant 

Fig. 1. Confirmatory factor analysis. The proposed three-factor measurement model. VF, Verbal Fluency; TMT; Trail Making Test; DF, Design Fluency; CWIT,  
Color-Word Interference Test.

Fig. 2. Structural equation model. Structural equation model linking co-activation patterns (CAPs) with executive function (shifting, inhibition, and fluency) moderated 
by body mass index (BMI).
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interactions were tested for main effects as these vari-
ables were not dependent on BMI. Covariates included 
mean FD, age, and sex following prior work (102–104). 
For significant interactions, simple slope analyses were 
conducted using the Johnson-Neyman technique (105) 
at various standard deviations (i.e., +1/−1 SD from the 
mean) for BMI to provide regions of significance.

Further, significant results for the moderation anal-
yses were recomputed without BMI outliers and with 
bootstrapping. The outlier and bootstrapping analyses 
can be found in Supplementary Materials. To minimize 
type II error when performing a moderation in SEM, an 
α-value of p < .05 was selected. All code for the fMRI 
and statistical analytic steps can be viewed on GitHub 
(https://github.com/lkupis/NKI_BMI).

RESULTS

Co-activation Patterns

Five dynamically recurrent brain states were observed 
across the participants (Figure 3). CAP 1 was character-
ized by co-activation among the visual network. CAP 2 
was characterized by co-activation among the L-FPN, 
M-FPN, and limbic nodes. CAP 3 was characterized by 
co-activation among the M-FPN. CAP 4 was character-
ized by co-activation among the L-FPN, DAN, limbic, 
and M-CIN nodes. Lastly, CAP 5 was characterized by 
co-activation among the D-FPN, M-CIN, somatosensory 
motor, and visual network nodes. See a graphical presen-
tation of the CAPs in Figure 3; frequency of occurrence 
of each CAP can be seen in Table S3; and maps of each 
CAP can be downloaded from Neurovault (https://www 
.neurovault.org/collections/10019/).

The co-activation patterns (CAPs) show brain regions 
that are activated or de-activated together. The graph-
ical depiction of each CAP is shown in the brain images 
on the left. L-FPN, lateral frontoparietal; M-FPN, medial 
frontoparietal; D-FPN, dorsal frontoparietal; M-CIN, mid 
cinguloinsular; SomMot, somatosensory motor.

Statistical Analyses

Outliers were identified in BMI; however, the values rep-
resented physiologically obtainable values so they were 
retained. The average percentage of missing data was 
.1% and tests for normality indicated all variables approx-
imated a normal distribution.

Confirmatory Factor Analysis

Several models were tested including a three-factor 
model with shifting, inhibition, and fluency latent fac-
tors, a one-factor model including all indicators as one 
EF factor and three two-factor models (shifting and 
inhibition, shifting and fluency, and inhibition and flu-
ency). Examination of the three-factor model after the 
inclusion of residual covariances between indicators  
indicated good model fit, χ2 = 19.52 (df = 19, p = .424),  
CFI = 1.00, SRMR = .03, and RMSEA = .01. The one-fac-
tor model indicated poor model fit, χ2 = 45.09 (df = 22,  
p = .003), CFI = .96, SRMR = .05, and RMSEA = .07. 
Results of the two-factor models are in Table S1. All 
two-factor models indicated poorer model fit compared 
with the three-factor model, thus confirming the a priori 
three-factor model (33).

The three-factor model included three latent fac-
tors of shift, inhibition, and fluency, and each factor 

Fig. 3. Recurring co-activation patterns.

https://github.com/lkupis/NKI_BMI
https://www.neurovault.org/collections/10019/
https://www.neurovault.org/collections/10019/


 : 2021, Volume 1 - 8 - CC By 4.0: © Kupis et al.

R E S E A R C H   A R T I C L E

had three indicators. The three-factor model was first 
tested without residual covariances. However, upon ex-
amination of the residual and modification indices, five 
residual covariances were identified (Figure 4). All the 
factor loadings were significant (p’s < .001; see Figure 
4). Additionally, all standardized factor loadings were 
>.5, except for the Tower indicator for Inhibition (.24). 
However, the Tower indicator was retained due to theo-
retical evidence supporting it as an indicator for inhibi-
tion (106). See Table 2 for the results of the three-factor 
measurement model.

The three-factor variables were significantly correlated 
with each other (p’s < .001; see Figure 4). Examination of 

the estimates of the correlations between pairs of resid-
uals revealed various significant correlations (p’s < .01; 
Figure 4). Previous work suggests that different EFs are 
correlated yet separable (22,33).

Structural Models

Several structural models were conducted involving the 
interactions between BMI and the brain dynamic metrics 
for each CAP predicting shifting, inhibition, and fluency. 
The interactions were tested one at a time while predict-
ing one latent factor at a time.

Table 2. Summary of Three-Factor Measurement Model Pathways

β b SE p
95% CI

[lower 2.5%, upper 2.5%]

Shifting

1. TMT .70 1.00 .00 [1.00, 1.00]

2. DF Switch .54 .80 .12 <.001*** [.57, 1.02]

3. VF Switch .53 .95 .14 <.001*** [.68, 1.22]

Inhibition

1. CWIT Inhibition .85 1.00 .00 [1.00, 1.00]

2. CWIT Inhibition/Switch .82 1.01 .09 <.001*** [.84, 1.18]

3. Tower .24 0.23 .07 <.001*** [.09, .36]

Fluency

1. VF Letter .53 1.00 .00 [1.00, 1.00]

2. VF Category .52 1.02 .16 <.001*** [.71, 1.33]

3. DF Fluency .68 1.00 .18 <.001*** [.65, 1.35]

***p < .001. 

Fig. 4. Final three-factor measurement model. VF, Verbal Fluency; TMT; Trail Making Test; DF, Design Fluency; CWIT, Color-Word Interference Test.
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Interactions

Results from the moderation SEM models can be seen in 
Table 3. When the individual interactions predicted each 
latent factor, three significant interactions were present. 
First, there were significant interactions between BMI and 
CAP 2 (characterized by co-activation among the L-FPN, 
M-FPN, and limbic nodes) DT predicting shifting, b = .12, 
b = 0.05, SE = 0.03, 95% CI [0.01, 0.23], and inhibition,  
b = −.12, b = −0.07, SE = 0.03, 95% CI [−0.13, −0.003].

There was also an interaction between BMI and CAP 5 
(characterized by co-activation among the DAN, M-CIN, so-
matosensory motor, and visual network nodes) DT predict-
ing shifting, b = .14, b = 0.06, SE = 0.02, 95% CI [0.01, 0.11].

All interactions accounted for statistically significant 
proportions of variance in each latent factor (Table 3), 
respectively, 6%, 5%, and 5%. Additionally, all reported 
interactions were reanalyzed without BMI outliers and 
with bootstrapping and only significant interactions with 
shifting remained (see Supplementary Materials).

Table 3. Summary of Interactions

β B SE
95% CI

[lower 2.5%, upper 2.5%]
R2

Shifting

BMI × DT CAP 1 −.05 −.03 .03 [−.09, .03] .05

BMI × DT CAP 2 .12 .05 .03 [.01, .23] .06

BMI × DT CAP 3 −.05 −.03 .03 [−.08, .03] .05

BMI × DT CAP 4 .05 .02 .02 [−.03, .07] .05

BMI × DT CAP 5 .14 .06 .02 [.01, .11] .06

BMI × F CAP 1 −.04 −.35 .50 [−1.34, .63] .05

BMI × F CAP 2 .08 .67 .47 [−.24, 1.59] .05

BMI × F CAP 3 −.09 −.74 .45 [−1.62, .14] .04

BMI × F CAP 4 .01 .11 .50 [−.88, 1.09] .04

BMI × F CAP 5 .05 .43 .48 [−.52, 1.37] .05

BMI × Transitions −.09 −.003 .002 [−.01, .001] .05

Inhibition

BMI × DT CAP 1 −.001 −.001 .04 [−.08, .07] .04

BMI × DT CAP 2 −.12 −.07 .03 [−.13, −.003] .05

BMI × DT CAP 3 .08 .05 .03 [−.02, .12] .04

BMI × DT CAP 4 −.03 −.02 .03 [−.08, .04] .04

BMI × DT CAP 5 −.11 −.06 .03 [−.11, .003] .05

BMI × F CAP 1 .06 .72 .64 [−.53, 1.97] .04

BMI × F CAP 2 −.09 −.89 .59 [−.19, .25] .04

BMI × F CAP 3 .09 .89 .57 [−.22, 2.01] .05

BMI × F CAP 4 −.04 −.46 .65 [−.15, .07] .04

BMI × F CAP 5 −.03 −.36 .62 [−.14, .08] .04

BMI × Transitions .07 .003 .002 [−0.002, 0.01] .04

Fluency

BMI × DT CAP 1 .08 .04 .04 [−.03, .11] .01

BMI × DT CAP 2 −.04 −.02 .03 [−.07, .04] .01

BMI × DT CAP 3 −.01 −.004 .03 [−.06, .06] .01

BMI × DT CAP 4 .12 .05 .03 [−.01, .25] .02

BMI × DT CAP 5 −.07 −.03 .03 [−.07, .02] .01

BMI × F CAP 1 −.02 −.21 .58 [−1.35, .92] .01

BMI × F CAP 2 −.06 −.48 .53 [−1.51, .56] .02

BMI × F CAP 3 .40 .40 .51 [−.60, 1.40] .02

BMI × F CAP 4 .11 .96 .60 [−.22, 2.13] .02

BMI × F CAP 5 −.08 −.65 .56 [−1.75, .44] .01

BMI × Transitions −.02 −.001 .002 [−.01, .003] .01

CI, confidence interval; DT, dwell time; F, frequency; BMI, body mass index.
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The reported interactions were further probed using 
the Johnson-Neyman technique to generate regions of 
significance plots in Mplus (Figure S4). The results showed 
that for all reported BMI × CAP DT interactions predict-
ing shifting and inhibition, significance was reached at 
average and high levels of BMI (0–5 z-scores). Further, 
at higher levels of BMI, an increase in CAP DTs was as-
sociated with an increase in shifting. The opposite rela-
tionship was shown in average and low BMI. However, for 
inhibition, at higher levels of BMI, an increase in CAP DTs 
was associated with a decrease in inhibition (Table  S2; 
Figure 5). Overall, a high BMI was associated with an al-
tered pattern between brain network dynamics and exec-
utive functioning.

The moderating effect of body mass index (BMI) on 
the relationship between co-activation pattern dynamics 
(DT and transitions) and executive functions. All variables 
were standardized, so a score of 0 represents the average.

Main Effects

Nonsignificant interactions were followed up by testing 
for main effects. There was a main effect for DT of CAP 
1 (characterized by co-activation among the visual net-
work) predicting inhibition, b = −0.83, SE = 0.41, 95% CI 
[−1.64, −0.02]. There were no other significant main ef-
fects as depicted in Table S4.

DISCUSSION

Overweight/obesity is associated with far-reaching nega-
tive impacts including health comorbidities (6), executive 
dysfunction (15), brain structural and functional alterations 
(107), and poor mental health (28). However, it is unknown 
whether or not BMI moderates the relationship between 
brain network dynamics and EF.

This study explored BMI as a moderator of whole-
brain network dynamics and EF using a dynamic CAP 
analysis. We first assessed a measurement model con-
sisting of shifting, inhibition, and fluency latent factors 
and found a three-factor model best fit the data. Next, 
latent factors of EF were used as dependent measures 
within a moderation SEM. Latent factors as dependent 
variables reduce the task impurity problem, and a latent 
variable is thought to be a purer measure of the target 
ability with reduced measurement error (31). We found 
BMI moderated the relationship between (1) DT of CAP 
2 (L-FPN, M-FPN, and limbic) predicting shifting and (2) 
DT of CAP 5 (D-FPN, M-CIN, somatosensory motor, and 
visual) predicting shifting. In significant interactions pre-
dicting shifting, at higher levels of BMI, an increase in 
CAP DTs was associated with an increase (higher score) 
in shifting. The opposite, and expected relationship, was 
shown in average and low BMI. Together, these findings 
suggest that there is an altered relationship between 
brain network dynamics and EF in overweight/obesity.

Fig. 5. Simple slopes.
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Currently, there is one study to our knowledge that 
has examined brain network dynamics across BMI (56). 
Few studies have assessed task fMRI brain activation and 
rsfMRI functional connectivity in overweight/obese in-
dividuals (37). The limited literature supports weight-re-
lated alterations in the M-CIN, M-FPN, and L-FPN (37). 
Overweight/obese individuals have been most common-
ly reported to have weakened connectivity among nodes 
within the L-FPN (39) and enhanced connectivity among 
nodes within the M-CIN (108) and M-FPN (44,109). 
Consistent with this work, in all significant interactions 
between BMI and brain network dynamics, we found 
CAPs consisting of the L-FPN, M-FPN, and M-CIN. This 
suggests that there are alterations among brain regions 
involved in executive functioning, internal thoughts, and 
salience processing (46) in individuals with a higher BMI.

Although there is limited information regarding the 
mechanisms surrounding executive dysfunction and 
brain dynamic alterations associated with an increased 
BMI (11), prior work suggests bidirectional relationships 
among BMI, cognition, and brain structure and function 
(11,37). For example, weight loss has been shown to 
have positive impacts on cognition (110) and is associat-
ed with brain structural and functional changes (111,112). 
Additionally, there is evidence that functional differences 
associated with overweight/obesity among brain regions 
that support EF, notably among and within the L-FPN, 
M-FPN, and M-CIN, may contribute to executive dys-
functioning and potentially contribute to a higher BMI 
(37). Our results additionally suggest that alterations 
among the L-FPN, M-FPN, and M-CIN may contribute 
to differences seen in EF in overweight/obesity and 
extends prior work by revealing that the relationship 
between brain dynamics and EF is moderated by BMI 
during young- to middle-aged adulthood.

The literature also suggests that brain alterations as-
sociated with a higher BMI are not only seen among 
the three large-scale brain networks but also with other 
regions important for sensory, emotional, and reward pro-
cessing (44,50,113–116). Increased functional connectivi-
ty has also been shown in regions of the D-FPN in obese 
individuals (39), suggesting alterations are in top-down 
control of attention (117). Similarly, in this study and in 
the instances where CAP relationships with EF depend-
ed on BMI, the co-activations also consisted of the lim-
bic, D-FPN, somatomotor, and visual networks. Since the 
CAP relationships predicting EF were altered in a higher 
BMI, this suggests that top-down and bottom-up pro-
cesses are also altered, consistent with previous findings. 
However, this study extends prior research by assessing 
CAPs associated with EF and the moderating effect of 
BMI on those pathways. Together, alterations among the 
large-scale networks and visual, sensorimotor, D-FPN, 
and limbic networks associated with EF may further per-
petuate a higher weight in individuals with a higher BMI.

Previous work suggests that greater neural flexibil-
ity is associated with greater cognitive performance 

(71,118–120). In a study that examined brain dynamics in 
19- to 80-year olds, DT increased with age and age was 
negatively correlated with total scores on the Wechsler 
Adult Intelligence Scale (WAIS) (120). This suggests that 
a longer time spent in certain states may be associat-
ed with poorer cognition. Consistent with this notion, 
in most of the significant interactions between BMI and 
DT, we found at average and lower BMIs, there was a 
negative relationship between the CAP DTs and shift-
ing, suggesting as DT increases, shifting abilities worsen. 
However, opposite patterns among DT and shifting were 
observed in individuals with a higher BMI compared to 
individuals with average and lower BMIs, indicating in 
overweight/obese individuals, a shorter DT is associat-
ed with poorer shifting abilities. Prior evidence supports 
that global brain network integration is needed for ef-
fective cognitive performance (121). A potential reason 
underlying the differences in individuals with a high 
BMI may be that brain networks may not be well inte-
grated, as supported by altered functional connectivity 
(37–39,45,50) and, therefore, associated with poorer EF. 
Additionally, prior work has shown that obese individuals 
exhibit reduced global and local network efficiency com-
pared with healthy-weight individuals (122) potentially 
underlying the differences observed in brain dynamics. 
Global and local network efficiency has also been previ-
ously linked with cognitive performance (123,124); how-
ever, this needs to be further explored in overweight and 
obese individuals. Overall, our findings support altered 
brain dynamic relationships with shifting and inhibition in 
individuals with a high BMI.

Lastly, it is important to note that we obtained primar-
ily significant interactions between BMI and CAP dynam-
ic metrics associated with shifting in this study and one 
main effect result. Significant interactions indicate that 
the effect observed between the independent variable 
and dependent variable is dependent on a moderating 
variable (98,99). In this study, the relationship between 
brain dynamics and shifting depends on the BMI of the 
individual. For example, when we examined the effect of 
shifting on brain dynamics, the effect was significant only 
at average to high BMI values but not for low BMI values 
(Figure S4). Therefore, the main effects for those specif-
ic variables become unimportant since the relationship 
is dependent on BMI. For nonsignificant interactions, 
the main effects were tested since there was evidence 
that the relationship between brain dynamics and EF 
was not dependent on BMI as done in previous studies 
(64,100,101).

We also found one main effect such that the brain dy-
namics of the visual network was associated with inhibi-
tion. Previous work has revealed associations between 
the visual network and cognition (125,126), suggesting 
information flow from sensory regions may influence 
higher-order processes. Interestingly, the relationship 
between visual network dynamics and inhibition was 
not dependent on BMI in this study. The visual network 
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dynamic differences in heterogeneous, neuropsychiatric 
conditions.

Some limitations are important to note in this study. 
First, BMI is considered an acceptable measure to study 
weight-related differences; however, it does not take 
into account adiposity or muscle leanness. Additionally, 
although the sample size included is one of the largest to 
assess brain relationships with BMI, future studies should 
continue to utilize larger samples to increase the gener-
alizability of the results. Our sample also included fewer 
underweight individuals than healthy weight and over-
weight/obese individuals (Figure S1) and may account 
for the lack of significant results found in underweight in-
dividuals. Future studies should include a larger sample 
of underweight individuals. Additionally, as it is more dif-
ficult to observe an effect with interactions (95,146), our 
results were not Bonferroni or FDR corrected. Further, by 
not adjusting for multiple comparisons, the results in this 
study may include increased false positives. Therefore, 
future work is needed to replicate the findings. Further, 
not all tests were available as part of the D-KEFS for this 
particular sample. For example, a common shifting task is 
the Wisconsin Card Sorting Test (147); however, very few 
participants were given this test, and therefore, it was not 
included. Similarly, the CWIT Inhibition/Switching con-
dition was used as an inhibition indicator in this study; 
however, this indicator may additionally recruit shifting 
abilities. Therefore, the psychometric properties of the 
D-KEFS should be further explored. Lastly, the latent 
factors assessed were highly correlated. Although the 
measurement models tested indicated separable fac-
tors, there may still be overlap within the factors tested 
as previous work suggests EFs are correlated yet separa-
ble (22). Further, in previous studies (55,64), shifting abil-
ities but not other EFs have been associated with brain 
dynamic patterns. Similarly, our main findings were as-
sociated with shifting. When outliers were removed and 
bootstrapping was implemented, the results for inhibi-
tion were no longer significant. Further work is needed to 
investigate this phenomenon. Additionally, future work 
should consider how different dynamic methods (e.g., 
sliding window; (148)) may uncover different aspects of 
brain function related to EF and BMI.

Future directions should be considered as a result of 
the findings from this study. In older age, having a higher 
BMI has been described as a “neuroprotective” factor 
and the “obesity paradox,” where cognition is generally 
preserved (149), and life expectancy is increased (150). 
Moreover, there is evidence that being overweight in 
older adulthood (75–90 years) provides an advantage in 
episodic memory compared with normal-weight older 
adults (149), and this effect is potentially mediated by 
functional connectivity within the M-FPN. Future work 
is needed to explore the neuroprotective effect of a 
higher BMI in older adults and its relationship among 
brain dynamics and EF (i.e., cognitive flexibility, fluen-
cy/updating, and inhibition). To this end, future work is 

and sensorimotor areas develop earlier, and regions 
important for higher-order cognitive functions under-
go fine-tuning across development (127). Additionally, 
interactions between sensory areas and cognition are 
shaped across development, creating more efficient task 
responses to stimuli (128,129). Since this study only in-
cluded young- to middle-aged adults, it is difficult to es-
tablish whether processes underlying sensory–cognitive 
interactions may be impacted by BMI differently across 
the lifespan. Therefore, longitudinal studies across the 
lifespan are needed to uncover the relationships among 
sensory regions, cognition, and BMI.

The mechanisms supporting brain-related changes in 
overweight/obese individuals and the associated exec-
utive dysfunction remain elusive (11,37). There are var-
ious hypotheses that may contribute to our findings of 
altered brain dynamic relationships with EF in individ-
uals with a high BMI. As previously mentioned, weight 
loss has been shown to be associated with changes in 
cognition and functional connectivity (37), suggest-
ing weight is mechanistically linked with cognition and 
brain function. Potential hypotheses accounting for this 
mechanism have been suggested and include greater 
leptin levels (130) and resistance (131), higher levels of 
inflammatory markers (132,133), impaired insulin regu-
lation (134), impaired blood–brain barrier dysfunction 
(133), and elevated triglycerides in overweight/obese in-
dividuals (11). For example, individuals with obesity have 
been found to be in a low-grade proinflammatory state 
(11). Certain inflammatory markers have been linked with 
cognitive decline (11,133,135,136), and sustained inflam-
mation has been linked with neurodegeneration (137). 
Although these hypotheses reveal potential mecha-
nisms to explain the relationships among BMI, brain dy-
namics, and EF, future work is needed to further explore 
these relationships in humans and longitudinally using 
mediation models.

As previously noted (39), many neuropsychiatric dis-
orders are characterized by alterations among the same 
networks as overweight/obese individuals, markedly 
the M-CIN, M-FPN, and L-FPN. For example, in autism 
spectrum disorder (ASD), there are mixed findings using  
functional connectivity that are often attributed to the 
heterogeneous nature of the disorder (138). Although 
that is an attributing factor, many studies have not con-
trolled for BMI (83,84,139–142). Further, recent work 
suggests that ASD should be studied in the context of 
heterogeneity but does not attribute BMI as a potential 
contributor (143), despite greater rates of overweight/
obesity in ASD (144,145). In one study where BMI was ac-
counted for a while examining brain dynamic differences 
in ASD and neurotypical individuals, brain differences 
were seen in ASD individuals based on their BMI (64). 
Our findings further support the notion that BMI may in 
part contribute to the differences seen between neuro-
typical populations and individuals with ASD. Therefore, 
BMI should be accounted for when exploring brain 
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additionally needed to explore BMI longitudinally and 
across the lifespan to gather further evidence of the 
mechanisms underlying cognitive and neural changes 
associated with overweight/obesity. Additionally, due to 
the cross-sectional nature of this study’s sample, a media-
tion analysis was not tested (151–155). Growing evidence 
in children and older adult populations suggests that 
overweight/obesity may affect cognition through chang-
es in brain structure (156,157). One suggested pathway 
underlying this mediation is through a low-grade in-
flammatory response characterized in obesity, shown to 
alter brain structure and cause EF impairments (15,158). 
Future work is needed to longitudinally disentangle the 
relationships among BMI, EF, and brain dynamics using 
mediation models. Lastly, in this study, CAP 3 exhibited 
laterality, and CAP 4 exhibited stronger co-activation on 
the left compared with the right hemisphere similar to 
findings in previous work (65,159–162). Future work is 
needed to better understand the relationship between 
CAP lateralization and EF.

In conclusion, we find evidence that BMI moderates 
the relationship between brain network dynamics among 
the M-CIN, M-FPN, and L-FPN as well as regions of the 
visual, D-FPN, sensorimotor and limbic regions, and 
shifting. Specifically, a higher BMI was associated with an 
altered mechanism of brain network dynamics associat-
ed with shifting. Our findings suggest that brain network 
dynamics underlying EF depend on BMI and that, in fu-
ture studies, BMI should be considered when studying 
relationships between brain network dynamics and indi-
vidual differences in cognition.
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LAY SUMMARY

Being overweight or obese is a major public health concern and impacts not just physical health symptoms but also cognitive 
functioning and brain structure and function. However, little is known about how weight or body mass index (BMI) impacts the 
relationship between brain dynamics, or time-varying brain network activation patterns, and executive function in the domains 
of inhibition, shifting, and fluency. Using co-activation pattern analysis, a method to examine time-varying relationships among 
brain networks, and structural equation modeling, we identified various brain states that were moderated by BMI when predicting 
shifting. Our findings provide novel information showing that the relationship between various co-activation patterns and cognitive 
flexibility depends on BMI. Our results suggest that this relationship is specifically altered in overweight/obese individuals and that 
BMI should be considered when studying relationships between brain network dynamics and executive function.
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Global Signal. Preprocessing was additionally conducted without global mean signal regression. The same analysis 
steps were taken to obtain the optimal k-value as done with global mean signal regression, resulting in five co-acti-
vation patterns (CAPs) (Figure S5). The resulting CAPs revealed the influence of the global signal, notably in CAPs 3 
and 5. CAP 3 shows all nodes with activity, and CAP 5 shows all nodes with inactivity representing the global signal 
across all nodes. Thus, this CAP analysis without global mean signal regression shows that when the global signal 
has a noticeable influence on a dynamic CAP analysis, it presents as network nodes in some CAPs being all active 
or inactive. Further, a comparison of the whole-brain activation patterns further revealed the necessity to regress 
out the global signal in this dataset (Figure S6). Further, prior work suggests that whether or not the removal of the 
signal through GSR is good or bad depends on the scientific question and should be considered when interpreting 
the results (163). Additionally, the removal of the global signal as a preprocessing step significantly mitigates artifacts 
from a variety of sources (164,165). Although in some cases the global signal can represent neuronal signal (166,167), 
taking the above position, in this case removal of the global signal, was beneficial to obtain CAPs associated with 
cognition.

Tests of Assumptions. The data were screened for outliers, missingness in data, and tests of assumptions. Outliers 
were identified in BMI; however, the values represented physiologically obtainable values so they were retained. The 
average percentage of missing data was .1%. The assumptions of normality, linearity, and homogeneity were assessed 
using SPSS, and they were not violated (Figure S7). Further, the main results from the study were tested without BMI 
outliers, and six subjects were removed.

Interactions. First, the significant interactions between BMI and CAP 2 (characterized by co-activation among the 
L-FPN, M-FPN, and limbic nodes) dwell time (DT) were still present while predicting shifting, b = 0.06, SE = 0.03, 95% 
confidence interval (CI) [0.01, 0.11], but not inhibition, b = −0.06, SE = 0.04, 95% CI [−0.13, 0.012]. There were also still 
significant interactions between BMI and CAP 5 (characterized by co-activation among the DAN, M-CIN, somatosen-
sory motor, and visual network nodes) DT predicting shifting, b = 0.07, SE = 0.03, 95% CI [0.02, 0.12].

Main Effects. There was additionally a main effect still present for DT of CAP 1 (characterized by co-activation among 
the visual network) predicting inhibition, b = −0.88, SE = 0.42, 95% CI [−1.71, −0.04].

Bootstrapping. The main results in the manuscript were additionally reanalyzed using bootstrapping with 5000 
bootstrap samples in Mplus (92,168) as previously recommended for interaction models with latent variables (169). 
The bootstrap CIs were reported for each result.

Interactions. After bootstrapping, the significant interactions between BMI and CAP 2 (characterized by co-activation 
among the L-FPN, M-FPN, and limbic nodes) DT was still present while predicting shifting, b = 0.05, SE = 0.03, 95% CI 
[0.004, 0.11], but not inhibition, b = −0.07, SE = 0.03, 95% CI [−0.13, 0.0104]. There were also still significant interactions 
between BMI and CAP 5 (characterized by co-activation among the DAN, M-CIN, somatosensory motor, and visual 
network nodes) DT predicting shifting, b = 0.06, SE = 0.03, 95% CI [0.01, 0.11].

Main Effects. There was additionally still a main effect for DT of CAP 1 (characterized by co-activation among the 
visual network) predicting inhibition, b = −0.90, SE = 0.43, 95% CI [−1.78, −0.05].

Every variable was tested for assumptions of normality, homogeneity, and linearity. Independence was not a con-
cern, as the data were cross-sectional. Two variables are presented for the test of normality, and all variables met the 
normality assumption. Next, every dependent variable met the assumptions of homogeneity and linearity.

Fig. S1. Distribution of body mass index.



 : 2021, Volume 1 - 19 - CC By 4.0: © Kupis et al.

R E S E A R C H   A R T I C L E

Fig. S2. Elbow criterion. The elbow criterion identifies k = 5 clusters.

Fig. S3. Co-activation patterns. CAP 1 was characterized by co-activation among the visual network. CAP 2 was characterized by co-activation among the L-FPN, 
M-FPN, and limbic nodes. CAP 3 was characterized by co-activation among the M-FPN. CAP 4 was characterized by co-activation among the L-FPN, DAN, limbic, and 
M-CIN nodes. Lastly, CAP 5 was characterized by co-activation among the dorsal frontoparietal (D-FPN), M-CIN, somatosensory motor, and visual network nodes.

Table S1. Summary of Two-Factor Measurement Models

Model χ2 (df) P CFI SRMR RMSEA

1.  Shifting/inhibition and fluency 37.29 (21) .016 .97 .04 .06

2.  Shifting/fluency and inhibition 25.18 (21) .240* .99 .03 .03

3.  Inhibition/fluency and shifting 44.65 (21) .002 .96 .05 .07

* p > .05.
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Fig. S4. Johnson-Neyman plots.
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Table S2. Summary of Simple Slopes Analysis

Unstandardized b SE

Shifting

BMI × DT CAP 2 (−1 SD) −.04 .15

BMI × DT CAP 2 (+1 SD) .06 .15

BMI × DT CAP 2 (−2 SD) −.10 .15

BMI × DT CAP 2 (+2 SD) .11 .15

BMI × DT CAP 2 (−3 SD) −.16 .16

BMI × DT CAP 2 (+ 3 SD) .17 .16

BMI × DT CAP 5 (−1 SD) −.13 .15

BMI × DT CAP 5 (+1 SD) −.02 .14

BMI × DT CAP 5 (−2 SD) −.19 .16

BMI × DT CAP 5 (+2 SD) .04 .15

BMI × DT CAP 5 (−3 SD) −.25 .17

BMI × DT CAP 5 (+ 3 SD) .10 .15

BMI × Transitions (−1 SD) .01 .01

BMI × Transitions (+1 SD) .001 .01

BMI × Transitions (−2 SD) .01 .01

BMI × Transitions (+2 SD) −.002 .01

BMI × Transitions (−3 SD) .01 .01

BMI × Transitions (+3 SD) −.01 .01

Inhibition

BMI × DT CAP 2 (−1 SD) .20 .19

BMI × DT CAP 2 (+1 SD) .07 .20

BMI × DT CAP 2 (−2 SD) .27 .20

BMI × DT CAP 2 (+2 SD) .01 .21

BMI × DT CAP 2 (−3 SD) .34 .21

BMI × DT CAP 2 (+ 3 SD) −.06 .22

BMI × DT CAP 5 (−1 SD) .10 .19

BMI × DT CAP 5 (+1 SD) −.01 .18

BMI × DT CAP 5 (−2 SD) .04 .18

BMI × DT CAP 5 (+2 SD) −.07 .19

BMI × DT CAP 5 (−3 SD) .21 .21

BMI × DT CAP 5 (+ 3 SD) −.12 .20

Fluency

BMI × DT CAP 4 (−1 SD) −.15 .19

BMI × DT CAP 4 (+1 SD) −.05 .18

BMI × DT CAP 4 (−2 SD) −.26 .21

BMI × DT CAP 4 (+2 SD) .05 .19

BMI × DT CAP 4 (−3 SD) −.26 .21

BMI × DT CAP 4 (+ 3 SD) .05 .19

*p < .05. **p < .01. ***p < .001.

Table S3. Frequency of Occurrence of Each Co-activation Pattern (CAP)

Percentage % (SD)

CAP 1 19.36 (.04)

CAP 2 19.29 (.04)

CAP 3 18.60 (.04)

CAP 4 23.39 (.04)

CAP 5 19.35 (.04)

Table S4. Summary of Main Effects. Only variables of interest were included 
within the table; however, covariates included age, sex, and head motion.

β B SE
95% CI

[lower 2.5%, upper 2.5%]

Shift

DT CAP 1 −.04 −.11 .18 [−.45, .24]

DT CAP 3 .06 .17 .17 [−.17, .51]

DT CAP 4 −.02 −.06 .17 [−.39, .26]

F CAP 1 −.08 −3.90 2.77 [−9.33, 1.53]

F CAP 2 −.002 −.12 2.82 [−5.65, 5.41]

F CAP 3 .06 2.97 3.00 [−2.90, 8.85]

F CAP 4 .002 .13 2.86 [−5.48, 5.73]

F CAP 5 .03 1.46 2.89 [−4.20, 7.12]

BMI .13 .04 .02 [.001, .09]

Age −.07 −.02 .02 [−.05,.01]

Mean FD −.04 −.95 1.49 [−3.86, 1.96]

Sex .18 .72 .23 [.28, 1.16]

Inhibition

DT CAP 1 −.24 −.83 .41 [−1.64, −.02]

DT CAP 3 −.06 −.24 .43 [−1.08, .61]

DT CAP 4 −.03 −.09 .44 [−.94, .77]

DT CAP 5 −.03 −.09 .37 [−.81, .63]

F CAP 1 .01 −.54 3.52 [−6.36, 7.44]

F CAP 2 −.01 −.73 3.66 [−7.91, 6.45]

F CAP 3 −.03 −1.82 3.92 [−9.50, 5.87]

F CAP 4 .05 3.44 3.65 [−3.71, 10.59]

F CAP 5 −.03 −1.69 3.63 [−8.80, 5.41]

Transitions  − 17 −.04 .04 [−.11, .03]

BMI −.15 −.06 .03 [−.12, −.01]

Age .14 .05 .02 [.01, .08]

Mean FD −.03 −.73 1.89 [−4.43, 2.97]

Sex −.07 −.35 .28 [.01, .08]

Fluency

DT CAP 1 .003 .01 .36 [−.70, .71]

DT CAP 2 −.13 −.30 .28 [−.86, .25]

DT CAP 3 .03 .08 .39 [−.69, .84]

DT CAP 4   −21 −.51 .29 [−.51, .10]

DT CAP 5   −05 −.13 .33 [−.77, .52]

F CAP 1 −.01 −.23 3.16 [−6.43, 5.96]

F CAP 2 .09 4.24 3.25 [−2.12, 10.60]

F CAP 3 −.09 −4.59 3.58 [−11.61, 2.43]

F CAP 4 −.04 −2.07 3.24 [−8.42, 4.27]

F CAP 5 .03 1.52 3.30 [−4.96, 7.99]

Transitions −.13 −.02 .04 [−.10, .05]

BMI .01 .004 .03 [−.05, .05]

Age −.02 −.01 .02 [−.04, .03]

Mean FD .02 .36 1.71 [−2.99, 3.70]

Sex −.06 0–.22 .26 [−.73, .28]

CI, confidence interval; DT, dwell time; F, frequency; BMI, body mass index; Mean 
FD, mean framewise displacement.
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Fig. S5. Co-activation pattern without global signal regression.

Fig. S6. Co-activation patterns with global signal regression (GSR) and without global signal regression.

Fig. S7. Tests of assumptions.


